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a b s t r a c t

An axisymmetric phase field model is developed and used to model surface tension forces
on liquid jets in microgravity. The previous work in this area is reviewed and a baseline
drop tower experiment selected for model comparison. The model is solved numerically
with a compact fourth order stencil on an equally spaced axisymmetric grid. After grid con-
vergence studies, a grid is selected and all drop tower tests modeled. Agreement was
assessed by comparing predicted and measured free surface rise. Trend wise agreement
is good but agreement in magnitude is only fair. Suspected sources of disagreement are
the simple turbulence model and the existence of slosh baffles in the experiment that were
not included in the model. Parametric investigation was conducted to study the influence
of key parameters on the geysers formed by jets in microgravity. Investigation of the con-
tact angle showed the expected trend of increasing contact angle increasing geyser height.
Investigation of the tank radius showed some interesting effects and demonstrated the
zone of free surface deformation is quite large. Variation of the surface tension with a lam-
inar jet showed clearly the evolution of free surface shape with Weber number. A break-
through Weber number of 1 was predicted by the variation of the surface tension model
which is close to the experimentally measured Weber number of 1.5 found in prior exper-
imental work.

Published by Elsevier Inc.
1. Introduction

Microgravity poses many challenges to the designer of fluid storage for spacecraft. Chief among these are the lack of phase
separation in the fluid and the need to supply vapor-free liquid or liquid-free vapor to the required spacecraft processes. One
of the principal causes of lack of phase separation is the creation of liquid jets. A jet can be created by liquid filling, settling of
the fluid to one end of the tank, or even closing a valve to stop the liquid outflow. In normal gravity the gravitational force
controls and restricts the liquid jet flow, but in microgravity jets must be contained by surface tension forces. Recent NASA
experiments in microgravity [1–6] have brought a wealth of data of jet behavior in microgravity. The Vented Tank Resupply
Experiment [6] was surprising in that although it contained a complex geometry of baffles and vanes the limit on liquid in-
flow was the emergence of a liquid jet from the top of the vane structure. Clearly understanding the restraint of liquid jets by
surface tension is key to managing fluids in low gravity.

Flow of a submerged axial jet constrained by surface tension in low gravity is similar to stagnation flow against a plate in
that the jet hits the constraining surface and is deflected radially out. However, in low gravity the ability of the constraining
surface to move in response to the exerted force is unique. In fact to increase the restraining force on the jet as flow rate
increases, the surface must deform to decrease the radius of curvature of the free surface, thereby increasing the surface
tension force. Eventually the limit is reached where the radius curvature required is sufficiently smaller than the jet diameter
r Inc.

mailto:David.J.Chato@nasa.gov
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


Nomenclature

a height
C phase distribution
d jet diameter
D tank diameter
f free energy
g wall function
k equation exponent
L tank length
M radial correction factor
P pressure
r jet radius
Re Reynolds number = quav d

l
u velocity
uav average jet velocity
V volume
We Weber number = qu2

av r
2r

x radial distance
y axial distance
a constant 1
b constant 2
hc contact angle
j constant 3
q density
r surface tension
/ potential function
W barrier function
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such that it can no longer restrain the jet. When the deformation of the free surface is large the restraining bulge is long and
slender. At this point several other mechanisms act to break down the jet, such as columnar buckling or the Taylor instability
where surface waves grow to such amplitude that they pinch a droplet off from the jet.

To model this low gravity phenomenon a numerical method that tracks the fluid motion and the surface tension forces is
required. Jacqmin [7] has developed a phase field model that converts the delta-function surface tension force into a contin-
uum function that peaks at the free surface and decays rapidly away. Previous attempts at this formulation have been crit-
icized for smearing the interface but by sharpening the phase function, double gridding the fluid function and using a higher
order solution for the fluid function these concerns have been ameliorated. Although Jacqmin laid out the basic axisymmetric
scheme the computer code and all the examples in the paper are planar. This paper extends the work of Jacqmin by adapting
his code solve to axisymmetric problems, formulating boundary conditions for both the axisymmetric centerline and wall
boundaries including contact angle, and then solving for the axial jet flow.

2. Review of literature

NASA Drop Tower Data is found in Refs. [8–18]. Symons [8–11] and Spuckler [12] studied the liquid inflow via axial jet
into a broad range of tank shapes both empty and partially full. Symons’ work establishes an empirical limit for jets of Weber
number (We) equal to 1.3–1.5 depending on jet velocity profile, where
We ¼ qu2
avr

2r
: ð1Þ
Staskus [13] extends the work of Symons by placing baffles in front of the jet. However, no attempt is made to analyze
these complex flows. Instead results are reported as a ratio of improvement to the unbaffled jet Weber number. Labus et al.
[14] also studies the effect of baffles including ones that break the central jet into several small jets. Aydelott [15–17] looks at
the problem of a recirculating jet where the liquid level is held constant. Results are classified into four flow patterns, dis-
sipation, geyser formation, aft collection, and circulation. It is the geyser formation/aft collection we concern ourselves with
in this paper. Aydelott’s assessment that a drop in mixing accompanies this transition indicates the transition’s importance.
Labus [18] studies both stagnation flow and free surface shape, but is concerned with the free surface of the back side of a
liquid jet stagnated against a flat plate in microgravity.

Shuttle based experiments in Refs. [1–6] provide valuable low gravity data. Video of Plexiglas tanks during shuttle orbital
flight provide several improvements over drop tower tests; including increasing the scale from 4 in. tanks to 12 in. tanks and
extending the duration of test from 5 s to half-an-hour. Tank Pressure Control Experiment has flown three times. The first
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flight focused on the mixing studies of Aydelott. Advances over Aydelott included actual heat transfer data by using a con-
densing fluid (refrigerant 113) and longer duration. Bentz [1–3] was able to confirm the geysering and circulating regimes of
Aydelott, but encountered an asymmetric regime between the two that was even lower heat transfer than aft collection, the
lowest mixing regime of Aydelott. The second flight of TPCE focused mostly on rapid boiling phenomena, but contains some
further tests on mixing. Hasan [4] confirms the findings of Bentz. The third flight [5] was done at a lower fill level but con-
firms the results of the other flights. The Vented Tank Resupply Experiment [6] was designed to look at vanes rather than
axial jets, but as noted previously exhibits the classic geysering behavior.

Analytical work is listed in Refs. [7,19–29]. Concus [19,20] provides differential equations of the free surface problem, but
analyzes only static cases. Nickell et al. [21] analyzes flow from a jet into a liquid and the resultant free surface shape for a
normal gravity application, but removes all surface tension from the analysis as secondary. Hochstein [22,23] analyzes the
microgravity mixing with a volume of fluid approach, but uses only a limited approximation to model the surface tension.
Aydelott et al. [24] and Der and Stevens [25] both analyze the motion of a bubble in the oxygen tank during separation of a
Centaur stage with VOF models; noteworthy in these is again the appearance of a geyser. Tegart [26] shows the application of
the surface Evolver code of Brakke [27] to actual tank shapes. Brackbill et al. [28] develops an improved surface tension mod-
el for VOF codes, but only shows one example of its use for axial jets. Schrader and Hochstein [29] uses a Runga–Kutta
scheme to solve the differential equation of free surface deformation in response to an imposed pressure field. This approach
is quite promising but does not always converge and limits the interaction between the flow field and the free surface. Jacq-
min [7] developed a phase field model of surface tension and implemented as a fourth order accurate scheme using a com-
pact 9-point stencil. Although Jacqmin lays out the basic axisymmetric scheme the computer code and all the examples in
his paper are planar. The Jacqmin model will serve as the basis for the present analysis.

3. Model

3.1. Introduction

To model the fluid motion the Navier–Stokes equations are formulated for low-speed incompressible flow. This paper will
document the adaptation of the Jacqmin algorithm to the problem of restraint of liquid jets. Velocity and pressure are placed
on a staggered grid, with velocity being tracked at cell faces and pressure at cell centers. To track the free surface a color
function is introduced which tracks liquid as 1/2 and gas as �1/2. Enhancements to the Jacqmin model include formulation
of an axisymmetric fourth order model, implementation of a symmetric boundary condition at the tank centerline, and
extension of the wall wetting boundary condition to fourth order accuracy. A simple velocity forcing function has been added
to simulate the jet without violating continuity.

3.2. Phase model of surface tension

Surface tension can be expressed as a free energy field. The expression for this energy in our formulation is given by
f ¼ 1
2
ajrCj2 þ bWðCÞ; ð2Þ
where C is a phase distribution function and W is a barrier function that is maximum at the interface and dies away as the
phase becomes uniform. This formulation is extracted from Van der Waals [30] and inherently implies that the equilibrium
free surface position is the one where the free energy is minimized. In order to model this behavior the physical W that dies
away on the molecular scale is approximated by a function with similar behavior on a larger scale such as
WðCÞ ¼ 22k

2kþ 2
C2kþ2 � 1

2
C2 þ 2k

8ð2kþ 2Þ : ð3Þ
This function has the required properties of being maximum at C = 0 and dying away to 0 at both 1/2 and �1/2. If we define
our C function as being 1/2 when the phase is liquid and �1/2 when the phase is gas this will produce the required behavior.
Higher values of k produce sharper peaks. For our solution we will choose k = 16. This was a value determined by test runs to
produce a sharp peak without requiring excessive iterations to solve.

To study the transients of the free surface some additional formulations are required. We define a potential function as
the rate of change in f per unit volume with respect to C
/ ¼ d
R

f dV
dC

¼ bW0ðCÞ � ar2C: ð4Þ
To determine the relation between a and b we look at the relation of a dividing surface between two infinite reservoirs one of
gas and one of liquid. Although the surface tension force is zero, the surface tension itself is given by the difference between
the thermodynamic energy of each phase. This is given by our model as
r ¼ a
Z þ1

�1

dC
dx

� �2

dx: ð5Þ
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Since the system is in equilibrium the / is zero so
bW0ðCÞ � ar2C ¼ b
dW
dC
ðCÞ � a

d2C

dx2 ¼ 0: ð6Þ
Approximating the solution numerically yields
r ¼ :371517
ffiffiffiffiffiffi
ab

p
: ð7Þ
ais adjusted until the interface just spans 3 velocity grid points (5 color function grid points). On a grid of 75 � 300 for a 5 cm
by 20 cm computational region and a r = 22.4 dynes/cm, an a of 5.1139 was used. This is the grid resolution used for the
majority of calculations used in this dissertation. Other grid resolutions use an a scaled from this value by the change in grid
size.

For the phase field interface to move freely through the grid diffusion of the C function is required. Again we use as a
model for our macro-scale model equations developed for the molecular scale. Cahn and Hillard [31] approximate the tran-
sients of the free surface by setting the diffusion fluxes as proportional to the potential gradient. In equation form this is
@C
@t
¼ jr2/: ð8Þ
In the microscale equation of Hillard and Cahn kappa is matched to molecular properties. In our macro-scale formulation it is
a somewhat arbitrary constant. There are constraints however. If too small a value of is used, then the interface becomes too
thick in some places and too thin in others producing unrealistic solutions. If too large a value of is used spurious secondary
flows will be generated in the bulk fluid. For the calculations of this paper kappa of 0.00021112 was used. This gives us two
coupled Poisson equations to solve for the phase distribution. To add the effects of fluid motion we must use the Navier–
Stokes equations. The continuity equation for incompressible flow is
~r �~u ¼ 0: ð9Þ
The momentum equations for each direction are given by
q
Dui

Dt
¼ q

@ui

@t
þ q

X
j

uj
@ui

@xj
¼ �~rP þ lr2ui � C~r/: ð10Þ
3.3. Fourth order formulation of the governing equations

The equations of the previous section cannot be solved directly but must be solved numerically. To keep the interface as
sharp as possible a compact fourth order stencil is used. The equation
r2u ¼ f ð11Þ
was show by Collatz [32] to be approximated by
r2 þ 1
12
ðDxÞ2r4

� �
u ¼ f þ 1

12
r2f þ OðDx4Þ: ð12Þ
Using central differencing on a square Cartesian grid one obtains the following computational stencil:
1
6

1 4 1
4 �20 4
1 4 1

2
64

3
75u ¼ ðDxÞ2

12

0 1 0
1 8 1
0 1 0

2
64

3
75f þ OðDx4Þ: ð13Þ
With some slight modification (We retain the r2/ term because it is calculated by Eq. (8) and correct our stencil for radial
expansion) we can use this to rewrite the potential equation (4) as
a
6ðDxÞ2

M� 4 Mþ

4M� �20 4Mþ

M� 4 Mþ

2
64

3
75C ¼ b

12

0 1 0
M� 8 Mþ

0 1 0

2
64

3
75W0ðCÞ �

0 0 0
0 1 0
0 0 0

2
64

3
75/þ ðDxÞ2

12
r2/þ OðDx4Þ; ð14Þ
where

M� ¼ ðx� þ x0Þ=2x0: ð15Þ
3.3.1. Symmetry boundary
At the centerline (r = 0) the problem is symmetric therefore along this edge the equation becomes
a
6ðDxÞ2

2 4
�28 16

2 4

2
64

3
75C ¼ b

12

1 0
6 4
1 0

2
64

3
75W0ðCÞ �

0 0
1 0
0 0

2
64

3
75/� ðDxÞ2

12
r2/þ OðDx4Þ: ð16Þ
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3.3.2. Wall boundary
At the outer wall two boundary conditions will be used. First is the no flux boundary
@/
@x
¼ 0: ð17Þ
The second is a bit more complicated. Postulating a wall energy function of the form
Fw ¼
Z

rgðCÞdA; ð18Þ
where g is a function chosen to yield the correct contact angle. Then the diffusively controlled equilibrium at the wall is
a
@C
@r
þ rg0ðCÞ ¼ 0 ð19Þ
for our purposes
gðCÞ ¼ cosðhcÞ½6C2 � 1:5�: ð20Þ
Substituting into our main equation
a
6ðDxÞ2

2 4
8� 4 Dx

r �20þ 4 Dx
r

2 4

2
4

3
5C ¼ b

12

0 1
2 8
0 1

2
4

3
5W0ðCÞ �

0 0
1 0
0 0

2
4

3
5/� ðDxÞ2

12
r2/þ 2

Dx
þ 1

3r
þ Dx

3r2

� �
g0

þ Dx
6
� Dx2

12r

� �
W00

b
a

g0 þ OðDx4Þ: ð21Þ
A similar approach is used for the top wall except that for simplicity hc is set to 90� resulting in g = g0 = 0 and the boundary
being symmetric. This should not affect the results of the calculation since interface flow along the top wall does not occur in
our problem until after free surface penetration. The equation for the top wall is
a
6ðDxÞ2

4M� �20 4Mþ

2M� 8 2Mþ

� �
C ¼ b

12
M� 8 Mþ

0 2 0

� �
W0ðCÞ �

0 1 0
0 0 0

� �
/� ðDxÞ2

12
r2/þ OðDx4Þ: ð22Þ
The bottom wall is done the same as the top wall. Here the logic used to justify hc is set to 90� is that the wall is only in
contact with liquid throughout our runs. The equation for the bottom wall is
a
6ðDxÞ2

2M� 8 2Mþ

4M� �20 4Mþ

� �
C ¼ b

12
0 2 0

M� 8 Mþ

� �
W0ðCÞ �

0 0 0
0 1 0

� �
/� ðDxÞ2

12
r2/þ OðDx4Þ: ð23Þ
3.3.3. Corner boundaries
Equation for the top inner boundary combining the symmetry and top wall boundaries
a
6ðDxÞ2

�28 16
4 8

� �
C ¼ b

12
6 4
2 0

� �
W0ðCÞ �

1 0
0 0

� �
/� ðDxÞ2

12
r2/þ OðDx4Þ: ð24Þ
Equation for the bottom inner boundary combing symmetry and bottom wall boundary
a
6ðDxÞ2

4 8
�28 16

� �
C ¼ b

12
2 0
6 4

� �
W0ðCÞ �

0 0
1 0

� �
/� ðDxÞ2

12
r2/þ OðDx4Þ: ð25Þ
Equation for the top outer boundary combining top and outer boundary
a
6ðDxÞ2

8� 4 Dx
r �20þ 4 Dx

r

4 8

� �
C ¼ b

12
2 8
0 2

� �
W0ðCÞ �

0 1
0 0

� �
/� ðDxÞ2

12
r2/þ 2

Dx
þ 1

3r
þ Dx

3r2

� �
g0

þ Dx
6
� Dx2

12r

� �
W00

b
a

g0 þ OðDx4Þ: ð26Þ
Equation for the bottom outer boundary
a
6ðDxÞ2

4 8
8� 4 Dx

r �20þ 4 Dx
r

" #
C ¼ b

12
0 2
2 8

� �
W0ðCÞ �

0 0
0 1

� �
/� ðDxÞ2

12
r2/þ 2

Dx
þ 1

3r
þ Dx

3r2

� �
g0

þ Dx
6
� Dx2

12r

� �
W00

b
a

g0 þ OðDx4Þ: ð27Þ
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3.4. Implementation as a CFD code

The previous equations form a complete set of differential equations that can be solved for the fluid transient motion.
Each equation is solved sequentially and numeric techniques specific to each equation are used to achieve the desired level
of accuracy.

3.4.1. Solution for the potential field
A Newton–Raphson iteration is used to project the body centered values of C to the cell boundaries and produce a / field

consistent with Eq. (8).

3.4.2. Advection of phase quantities
Eq. (14) and its boundary equations form a matrix equation that is solved using the current values of C and / to project

new values. This process is iterated four times to smooth the solution.

3.4.3. Solution of the velocity field
Eq. (10) is used to predict the change in velocity field. The projected velocity changes are used to calculate viscous stresses

that are then used to correct the velocity change.

3.4.4. Solution of the pressure equation
The velocity changes are fed into the pressure Poisson equation that is solved by successive over relaxation to produce a

uniform static pressure field consistent with our incompressible flow assumption.

4. Comparison to experiment

4.1. Aydelott’s test data

After implementation of the code in axisymmetric form was complete and verified by several test cases, the drop tower runs
of Aydelott [17] were modeled. Aydelott looked at the problem of a recirculating jet where the liquid level is held constant. Re-
sults are classified into four flow patterns, dissipation, geyser formation, aft collection, and circulation. It is the dissipation/gey-
ser formation we concern ourselves with in this paper. Aydelott’s assessment that this transition is accompanied by a drop in
mixing indicates the transition’s importance. Table 1 shows a compilation of Aydelott’s zero-g runs in these regimes. Little of the
drop tower film remains, but Fig. 1 shows the time history of run 15 (Re = 450, fill level 50%). Times are estimated from frame
counts since the clock is out of focus. Four tanks were used; a 10 cm diameter cylindrical tank with hemispherical ends 20 cm
long including the ends (labeled a in Table 1); a similar tank with the end opposite the inlet inverted (labeled b); the same as the
second except with ring slosh baffles at the 30% and 77% full levels (labeled c); and a 10 cm sphere. Spherical tank data has been
omitted since we cannot model curved boundaries. Results were run with a 0.4 cm diameter inlet of length either 1 cm from the
tank bottom or 8 cm from the bottom. The flow rate was varied from 17 to 194 cm/s.

4.2. Approximation of the liquid jet

Since the solution of the Navier–Stokes equation we used conserves mass strongly, injecting liquid into the solution space
posses many difficulties. To avoid these problems the entering jet was modeled as a recirculating region where the axial
Table 1
Experimental results of Aydelott in the dissipation and geyser formation regimes.

Test Tank shape Liquid fill vol% Jet Reynolds number Jet Weber number Ratio of geyser height to tank diameter

1 c 29 630 0.96 0.55
2 c 29 900 1.09 .80
12 b 39 450 .49 .36
13 b 39 900 1.11 .84
14 b 39 1290 1.59 2.16
15 c 50 450 .39 .42
17 c 51 630 .78 .34
19 c 52 900 .81 .52
24 a 52 1320 1.16 1.45
50 b 60 450 .37 .24
51 b 60 900 .72 .42
52 b 60 1320 1.05 1.10
53 b 73 900 .57 .30
57 b 73 1270 .78 .70
64 b 91 480 .31 .10
65 c 91 900 .48 .20
66 c 92 1290 .62 .48



Fig. 1. Drop tower run 15, fill 50%, jet velocity 17 cm/s.
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velocity was forced to a desired value. This allowed the radial velocity to entrain liquid into the jet and thus conserve mass. A
0.5 cm length for this region was chosen since this appeared to be long enough so at the top of the region the mass entrain-
ment was sufficient such that the v velocity was the dominant fluid motion.

4.3. Grid sensitivity

A grid sensitivity test was done to confirm the choice of a 75 by 300 grid for modeling. This grid is fine enough to place
two points in the starting jet, but yet not overly tax the computer for storage and run time. Comparison to a 100 by 400 grid
showed little change in either flow field or free surface shape. Fig. 2 shows the comparison. Note: although the plot time for
the finer grid is off by 0.07 s due to differing timesteps, the problem sufficient slow moving that this does not represent a
substantial mismatch.

4.4. Computer predictions for laminar runs

Aydelott’s test were first modeled using a laminar solution. A number of cases were observed by Aydelott to be either
laminar or transitional with Reynolds number between 450 and 1290. Figs. 3 and 4 show representative computer predic-
tions of Aydelott’s tests. Fig. 3 is a low flow rate test that only slightly deforms the free surface. Fig. 4 is a high flow rate test
where the geyser continues to grow throughout until it eventually contacts the far boundary of the grid. The model handed
the free surface deformation quite nicely, even to the point of modeling geyser growth in the regime where the free surface is
no longer restrained (see Fig. 4).
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4.4.1. On laminarity of the jet inflow
Classic analysis of the liquid-in-liquid jet indicates very low stability. Viilu [33] showed a limit as low as Re = 11.

McNaughton and Sinclair [34] using a more practical analysis divided the liquid-in-liquid jet into four regimes:

dissipated laminar (Re < 300 approx.);
fully laminar jets (300 < Re < 1000 approx.);
semi-turbulent (1000 < Re < 3000 approx);
fully turbulent (Re > 3000).

Their transition numbers are somewhat a function of the length of their apparatus. Dissipated jets only made it a portion
of the way across the test chamber before dissipating into the bulk liquid via the same breakdown reported in the previous
reference. This distance increased with increasing Re number until a laminar jet spanned the length of their test chamber the
fully laminar region. As the Re increased further a turbulent flow region began to emerge near the far end of the jet. The
length of laminar flow would begin to decrease as the flow increased until eventually the jet would become turbulent right
at the nozzle marking the transition to the final region.

Their data for the length of the laminar region was given by the correlation
a=d ¼ 9:97� 107Re�2:46ðD=dÞ�0:48ðL=dÞ0:74
: ð28Þ
Our runs of Re 450, 630 are in the fully laminar region. The Re 900 run should transition to turbulence at a distance of 8.3 cm
and Re 1290 at 3.4 cm. Aydelott reviewing the data reports the following findings. No spreading at Re 450, for Re 630 no
spreading if the liquid height over the jet was less than 2.5 cm; spreading consistent with a laminar jet thereafter. Re 900
a jet intermediate between laminar and turbulent. And for Re > 1500 a fully turbulent jet.

4.4.2. Visual comparison
Comparison of the data to the model show similarity in jet spread and flow motion. The model even captures the vortex

shedding from the tip of the geyser as the flow develops although the axisymmetric nature of the model forces more regu-
larity in the vortex shedding than is seen in the drop tower film.

4.4.3. Predicted geyser height
Model predictions of geyser heights are shown in Table 2. For comparison the measured heights of Aydelott are also

shown. Although the model under predicts the experiment for the lowest flow rate it over predicts at the next highest rate.
It predicts breakthrough at a flow rate of 34 cm/s even though the experimental data indicate the jet is still contained. The
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Fig. 3. Test 15, jet velocity 17 cm/s, fill height 9.1 cm at the centerline.
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over prediction is believed due to the lack of turbulence modeling. It is well known that turbulent jets spread at a much high-
er rate than laminar jets. This increased spread will lower the centerline velocity more quickly and increase the area of the jet
at the free surface, decreasing the amount of surface deformation required to contain the jet.

4.5. Turbulence modeling

In an effort to improve the prediction at higher Reynolds number flows a simple turbulence model was introduced. Sim-
ple mixing length models of turbulence suggest that for the free jet flow can be approximated by using a constant turbulent



X (cm)

Y
(c

m
)

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

a) Time 0.33 seconds
X (cm)

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

b) Time 0.50 Seconds

Ref
Vector

50 cm/s

X (cm)
Y

(c
m

)
0 1 2 3 4 5

0

2

4

6

8

10

12

14

16

18

20

c) Time 1.02 seconds
X (cm)

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

d) Time 2.06 Seconds

Ref
Vector

50 cm/s

X (cm)

Y
(c

m
)

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

e) Time 3.10 seconds
X (cm)

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

f) Time 3.45 Seconds

Ref
Vector

50 cm/s
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viscosity. Pope [35] using the experimental data of Hussien et al. [36] shows that turbulent viscosity is constant ±15%
through the bulk of the jet although it does die down to 0 at the edge. Unfortunately Pope gives this constant in a non-dimen-
sional form not readily available to use in our analysis. Schlichting [37] gives another formula for the average value of tur-
bulent viscosity as a function of mean flow rate. This formula is
lt ¼ qA

ffiffiffiffiffiffiffiffiffi
3Ka

p

r
; ð29Þ
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and A is empirically determined to be 0.017. Using this formula lt = 0.158 g cm/s when the velocity is 34 cm/s and
lt = 0.232 g cm/s when the velocity is 50 cm/s.

It is a fairly simple matter to introduce this as a new viscosity throughout the flow field. Although this is a pretty crude
approximation its main effect is to suppress flows outside the main jet. It is believed that for the phenomena of geyser
( c m )m e 2 . 0 6 S e c o n d s R e f0 . 1 5 8 g c m / s .



Table 2
Geyser height comparison for laminar runs.

Test Model ratio of geyser height to tank radius Measured ratio of geyser height to tank radius

1 1.22 0.55
12 0.22 .36
15 0.1 .42
17 0.78 .34
50 0.1 .24
64 0.1 .10
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height, which we are trying to investigate that major influence, is jet spreading which will still be accurately modeled by this
approach. Flows at Re = 450 are omitted since they are already well modeled by the laminar test. Fig. 5 shows a represen-
tative runs. Unfortunately the fully turbulent model overcorrects resulting in lower predicted geyser heights than experi-
mentally measured. Table 3 shows a numerical comparison between predicted and measured heights. Also included are
the previous predictions of Schrader and Hochstein [29] (only available for a few runs).

4.6. Parametric variation of the turbulent viscosity

In an effort to improve the modeling of geyser height a parametric variation of the value of turbulent viscosity was con-
ducted. Variation was focused on the 50 cm/s runs because these are the ones with the most deviation from measured val-
ues. The effort started by looking at test 14. Initially the turbulent viscosity was dropped to 0.14 g cm/s. The 0.14 g cm/s
viscosity data over-predicted the geyser height, yielding a non-dimensional geyser height of 2.5 rather than the measured
value of 2.16.

By looking at the results of the 0.232 g cm/s geyser height and 0.14 g cm/s a new value of 0.18 g cm/s was estimated. All
50 cm/s runs were modeled with this viscosity. Fig. 6 shows the results for test 52 that is the closest match to the experi-
mental data. Table 4 shows a numerical comparison between predicted and measured heights.

Overall the 0.18 g cm/s viscosity data matches the experimental data reasonably well. The model still under predicts
slightly most of the data but matches the test 52 data very closely.

4.7. Flow model in the turbulent regime

The full turbulence model under predicts geyser height for transitional flow. The agreement of the model was better than
the previous model of Schrader and Hochstein [29] and converged for all runs instead of just a few. Adjustment of turbulent
model coefficient can enable the model to match experimental geyser height but there is insufficient information on the flow
field to determine the correct value. Geyser stability seems closely linked to the spread rate of the jet. Several other turbu-
lence models were explored but not implemented. The work of Hochstein et al. [22] used a k–epsilon model with the Pope
[38] correction for axial jets. However, the predictions of Hochstein et al. [22] do not seem any better than the ones we ob-
tained with a much simpler model. Rubel [39] showed that the Pope correction factor produces poor results for the radial
outward jet which is the other key feature of our simulation. Large Eddy models of turbulence were also considered, but
the implementation of these would require construction of a full three-dimensional model of the flow field. The correct coef-
ficients for the Large Eddy models of axial jets are still a matter of research [40]. Hence it was felt that the correct laminar–
turbulent transition length is unlikely to be predicted by turbulence model. It is felt that the laminar–turbulent transition
length determines spread of jet. So the Large Eddy model would have substantially increased the complexity of the code
without much prospect of improved results.

5. Parametric studies

Once the code’s performance against the experimental cases has been established, the code was used to understand the
parameters and influences that lead to the geyser shapes observed. Several parameters which where not studied in the
experiment where selected for further analysis (actually most of these parameters would be quite difficult to vary experi-
mentally but can be changed easily by computer). Computer runs were made and the results analyzed. Findings are reported
below.

5.1. Contact angle

The first parameter to be studied was the effect of changing wall contact angle. This value can be changed with a single
input into the code. It is of interest because it varies greatly in the liquids used in spacecraft (water 60�, cryogens 0�). It also
gives a range of free surface forces (90� no force, 0� maximum force.) This change enables us to study how changes in the
equilibrium shape without the jet influence the final geyser shape.
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Free surface shapes are plotted in Fig. 7 for various contact angles for a jet of 17 cm/s at 3.10 s with a liquid fill height of
6.5 cm. The 30� contact angle acts to raise the free surface by only 0.02 cm over the 0� geyser height. The 60� contact angle
raises slightly more about 0.12 cm from the 0� mark. The 90� contact angle increases the geyser height by 0.19.

Although the geyser heights increase they are not directly proportional to the change in equilibrium free energy. It can be
shown that the equilibrium free surface radius of a tank with a finite contact angle is a spherical segment of a sphere of larger
radius. Hence it should be the same as that of a larger tank with a smaller contact angle.



Table 3
Geyser height comparison for turbulence model.

Test Model ratio of geyser height to tank radius Prediction of Schrader Measured ratio of geyser height to tank radius

13 0.36 0.36 .84
14 1.22 N/A 2.16
19 0.26 N/A .52
24 0.82 N/A 1.45
51 0.26 N/A .42
52 0.7 N/A 1.10
53 0.22 0.21 .30
57 0.46 0.45 .70
65 0.14 N/A .20
66 0.26 N/A .48

Table 4
Geyser height comparison with improved turbulence model.

Test Model ratio of geyser height to tank radius Prediction of Schrader Measured ratio of geyser height to tank radius

14 1.66 N/A 2.16
24 1.2 N/A 1.45
52 1.06 N/A 1.10
57 0.58 0.45 .70
66 0.4 N/A .48

0

5

10

15

0 5
Radial Distance (cm)

L
iq

u
id

 H
ei

g
h

t (
cm

)

Contact Angle 0

Contact Angle 30

Contact Angle 60

Contact angle 90

Fig. 7. Comparison of free surface shape as a function of contact angle.
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Table 5
Volume comparisons.

Contact angle (�) Total liquid volume (cm3) Geyser volume Draw down volume

0 637.8 0.64 1.80
30 609.2 1.4 2.12
60 560.9 1.5 4.78
90 510.5 2.06 7.2
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One factor that may reduce the geyser height with increasing contact angle is the change in liquid volume. In order to
obtain the same fill height at the centerline and match the equilibrium free surface shape the liquid volume for the 30,
60, and 90 contact angles had to be reduced. Table 5 shows fluid volumes for each test. Since the total quantity of liquid
is fixed, in order for the geyser to rise liquid in the outer regions of the tank must draw down. To estimate the shift in level
from this effect the liquid interface shape was compared to the equilibrium free surface. Geyser volume was estimated by
taking the volume of liquid above the equilibrium line in the center of the tank. Liquid draw down was estimated by the
volume of gas below the equilibrium free surface. These two volumes are tabulated in Table 5.

In theory the two quantities should be exactly equal, in practice the liquid draw down is greater. Calculation of total vol-
ume based on free surface position shows some loss in total fluid volume as the calculation progresses. Evaluation of the
total color function shows no change so the fluid must be lost in the spreading of the color function at the interface. Because
the delta volumes at the interface are small volumes compared to the total volume they are much more influenced by this
inaccuracy. A small volume loss of less than 1% can result in a tripling of the draw down volume. Once the liquid loss is re-
moved from the draw down volume, the geyser volume and draw down volume are seen to match much more closely.

5.2. Tank wall

The results of the contact angle study suggested a significant influence of the wall on the final geyser height. To further
study the influence of the wall, a tank with a radius of 10 cm was run with the same jet submergence as the 5 cm tank. The
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increased distance to the wall should reduce the influence of the wall and result in higher geyser height. Fig. 8 shows a com-
parison in free surface profiles at 3.1 s for a 17 cm/s jet at liquid height of 6.5 cm for a 0� 5 cm tank and a 0� 10 cm tank. The
larger tank results in a geyser height increase of 0.61 cm. Some of this can be attributed to a decrease free surface energy. The
surface pressure of a 10 cm radius bubble is only 4.48 dynes/cm2 compared to 8.96 dynes/cm2 for a 5 cm radius bubble, a
decrease of 50%. Another part of this can be attributed to an increased geyser volume. In order to match the 6.5 cm at the
centerline in the 10 cm tank liquid volume has increased to 3114 cm3. This corresponds to a fill fraction of 49.6% rather than
the 39% of the 5 cm tank. Geyser volume increases from 0.6 to 39.2 cm3, while draw down volume becomes 41.9 cm3 instead
of 1.8 cm3. Also of interest is the crossover point between the geyser and the draw down regions. This is at 7.5 cm, far beyond
the 5 cm wall. This indicates that unconstrained the geyser influence extends beyond the 5 cm radius. Another comparison
which is valuable is to compare to the 60� contact angle case. Analysis predicts the equilibri